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Abstract—The heuristic 1/N (i.e., equally weighted) portfolio
and heuristic quintile portfolio are both popular simple strategies in
financial investment. In the1/N portfolio, a fraction of1/N of the
wealth is allocated to each of the N available assets. In the quintile
portfolio, first the assets are sorted according to some character-
istics, e.g., expected returns, and then the strategy equally longs
the top 20% (i.e., top quintile) and perhaps shorts the bottom 20%
(i.e., bottom quintile). Although they have been criticized for their
lack of mathematical justification when proposed by practitioners,
they have shown great advantage over more sophisticated portfo-
lios in terms of stable performance and easy deployment. In this
paper, we reinterpret the 1/N and quintile portfolios as solutions
to a mathematically sound robust portfolio optimization under
different levels of robustness level in the stocks’ characteristics.
A variance-adjusted robustness uncertainty set is also proposed,
leading to the inverse-volatility portfolios, whose nonzero weights
are inversely proportional to their standard deviation.

Index Terms—1/N portfolio, quintile portfolio, robust portfolio
design, robust �1-norm optimization, inverse-volatility portfolio.

I. INTRODUCTION

MODERN portfolio theory has been a rapidly developing
field since Harry Markowitz’s seminal paper [2]. Prior

to that, investments were made in a discretionary manner, i.e.,
based on people’s expertise or experience. Markowitz proposed
the idea that risk-adverse investors should optimize their port-
folio to achieve a tradeoff of maximum expected return and
minimum risk. This idea has remained the pillar of modern quan-
titive finance and portfolio optimization, effectively shaping the
empirical investment into a mathematical and scientific art.

Denote by w ∈ RN the portfolio weights vector on N assets.
Markowitz’s mean-variance portfolio can be obtained by solving
the following problem:

minimize
w

wTΣw − λμTw

subject to w ∈ W,
(1)

where Σ and μ are the covariance matrix and mean vector
of the returns of the N assets, W denotes the portfolio con-
straints, and λ ≥ 0 is a parameter striking a balance between
the expected return (μTw) and the portfolio risk (defined by
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the variance wTΣw). After such mathematical formulation,
more sophisticated portfolio formulations have been developed,
e.g., the minimum Conditional Value-at-Risk portfolio [3], the
high-order portfolio [4], and the risk parity portfolio [5].

However, the vanilla Markowitz’s portfolio and some other
more sophisticated portfolios fail to achieve the promised per-
formance when deployed into real financial markets. This is due
to many reasons as recognized in the literature, three of which
are described next. First, the variance is not a good measure of
risk in practice since it penalizes both the unwanted high losses
and the desired low losses. Second, the objective of Markowitz’s
portfolio formulation, i.e., the problem (1), uses a single measure
of overall risk. The distribution of risk is ignored here, so that
investors are exposed to the unacceptable losses. Last but not
least, a reason for the bad performance is the poor knowledge
of the true parameters like Σ and μ. Indeed, in practice they
have to be measured by some estimation method that suffers
from unavoidable estimation errors [6]. A small perturbation on
the parameters, especially the mean vector μ, might lead to a
significantly different solution [7]. Another issue arises when the
sophisticated portfolio optimization problems are nonconvex,
making it difficult to obtain their global optimal solutions [8].
Besides, such portfolio optimization problems, although starting
from a reasonable and rigorously theoretical motivation, may
finally lead to unpredictable optimal solutions. The frequent
failure and lack of intuition make the investors hesitate to take
these sophisticated portfolios [9].

Robust parameter estimation and robust portfolio optimiza-
tion are two traditional approaches dealing with estimation error
in the parameters [10]–[12]. The classical robust parameter
estimation methods include shrinkage estimation [13], Bayesian
approach [14], and Black-Litterman model [11]. Besides, as-
suming data follows a heavy-tailed distribution usually makes
the parameter estimates robust to outliers [6], [15]. Taking the
structure of covariance matrix into consideration also helps to
obtain a more accurate estimate [16]. Robust portfolio opti-
mization directly considers the parameter uncertainty in the
problem formulation, i.e., it optimizes the worst-case objective
with parameter located in a known uncertainty set. Various kinds
of uncertainty sets with different criteria have been studied in the
literature [8], [17]. Recently, such robust portfolio optimization
approach has been introduced into high-order portfolio [18] and
weather derivative portfolio with temperature uncertainty [19].
Although the robust portfolio optimization can alleviate the
influence of parameter estimation errors, the complexity of
solving the problem increases. Even a global optimal solution is
obtained, it may be difficult to gain an intuitive understanding.

Therefore, instead of using these sophisticated portfolios,
practitioners prefer some heuristic but common-sense portfolios,
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e.g., the 1/N (a.k.a. equally weighted or uniform) portfolio [20]
and quintile portfolio [21], [22]. Motivated by the ‘naive’ diversi-
fication for reducing the risk, the 1/N portfolio equally allocates
a fraction of 1/N of wealth to each asset. A comprehensive
study has been done to show that sample-based mean-variance
portfolios fail to defeat the 1/N portfolio for several empirical
datasets, and numerous theory-based optimal portfolios cannot
consistently outperform it either [20]. The long-only (long-
short) quintile portfolio first sorts the assets according to some
characteristics and then equally longs the top 20% (and perhaps
shorts the bottom 20%) [22]. It is also called the factor investing
as it mimics returns of some common factors [21], [23]. The
factor model, e.g., Capital Asset Pricing Model (CAPM) [24]
and Fama French model [25], was initially introduced to ex-
plain stock returns. Some of the factors used in these models
are calculated as the excess returns of assets with attractive
characteristics. For example, five well-known factors, namely,
Value, Low Size, Low Volatility, Momentum, and Quality, may
be obtained by ranking the assets according to book-to-price
ratio, low market capitalization, low standard deviation, return,
and return on equity, respectively [21]. Empirical studies show
that these factors have exhibited excess returns above the mar-
ket [21], [26]. The quintile portfolio based on the momentum
measured by the estimated return in the past few months is one of
the most famous ones. A study found that about 77% percent of
155 mutual funds were actually using such kind of portfolio over
the 1975-1984 period [27]. Interestingly, some investors might
prefer the quintile portfolio based on the opposite of short-term
return because they believe in short-term reversals [28]. More
evidences on the benefits of quintile portfolios are presented
in [29]–[32]. It has been a widely debated mystery how these
simple portfolios defeat the theory-based portfolios.

In this paper, we propose a mathematically sound robust
portfolio optimization problem against the estimation error of
the asset characteristics. The rigorous proofs show that its
solution reduces to the heuristic 1/N and quintile portfolios
under different levels of robustness level in the characteristics.
We also propose a variance-adjusted uncertainty set for the
characteristics. Such uncertainty set will be shown to be related
to the inverse-volatility portfolios, whose nonzero weights are
inversely proportional to their standard deviation [33], [34].

The remaining sections of this paper are organized as follows.
In Section II, we introduce the heuristic 1/N portfolio and quin-
tile portfolio with a simple illustration of their performance. In
Section III, we show how to cast the heuristic 1/N portfolio and
quintile portfolio through a robust portfolio design. The quintile
inverse-volatility portfolio is derived from a similar manner in
Section IV. In Section V, we present some variations of the
classical quintile portfolio. Numerical experiments are evaluated
in Section VI and, finally, conclusion is given in Section VII.

II. HEURISTIC PORTFOLIOS AND THEIR SURPRISING

PERFORMANCE

It is widely accepted that diversification is an effective way to
reduce risk in asset allocation. Following this intuition of diversi-
fication, practitioners have proposed several heuristic portfolios,

TABLE I
THE DETAILED PROBLEM FORMULATION OF SEVERAL

THEORY-BASED PORTFOLIOS

e.g., the 1/N portfolio and quintile portfolio. These portfolios
are much simpler than the Markowitz’s portfolio but actually
work well in the real markets. The 1/N portfolio allocates a
fraction of 1/N of wealth to each asset:

w =
1

N
1N . (2)

It does not require any information from the market. Different
from that, the quintile portfolio sorts the assets from top to bot-
tom based on some information from market, e.g., the estimated
expected return. Then the quintile portfolio equally longs the
top 20% (i.e., top quintile):

w =
1

N/5
× [1, . . . , 1
︸ ︷︷ ︸

20%

, 0, . . . , 0
︸ ︷︷ ︸

80%

]T . (3)

The bottom 20% (i.e., bottom quintile) can also be equally
shorted if the short selling operation is allowed, i.e.,

w =
1

2N/5
× [1, . . . , 1
︸ ︷︷ ︸

20%

, 0, . . . , 0
︸ ︷︷ ︸

60%

,−1, . . . ,−1
︸ ︷︷ ︸

20%

]T . (4)

The two quintile portfolios are specifically called the long-only
quintile portfolio and long-short quintile portfolio, respectively.

A comprehensive study has been done to show that sample-
based mean-variance portfolios fail to defeat the 1/N portfolio
for several empirical datasets, and numerous theory-based op-
timal portfolios cannot consistently outperform it either [20].
More evidences have been provided to show the profitabil-
ity of the quintile portfolio [29]–[32]. We perform a back-
test to illustrate the surprising performance of these heuristic
portfolios. We include some classical theory-based portfolios,
namely, the global minimum variance portfolio (GMVP), the
mean-variance portfolio (MVP), the global maximum return
portfolio (GMRP), and the maximum Sharpe ratio portfolio
(MSRP). The problem formulations of these portfolios are given
in Table I. We consistently use the no shorting constraint, i.e.,
W = {w|w ≥ 0,1Tw = 1}, for all the portfolios to ensure
fairness of comparison. Actually, the GMVP, MVP, and GMRP
are special cases of general Markowitz’s mean-variance port-
folio, i.e., the problem (1), with λ being 0, 1

2 , and +∞. We
use the historical daily price data of stocks from Standard &
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Fig. 1. Cumulative returns of theory-based portfolios and heuristic portfolios using S&P 500 stocks from 2008 to 2016.

Poor (S&P) 500 Index components from 2008 to 2016. The
parameterμ andΣ are estimated by the sample mean and sample
covariance matrix using the data of past 4 years. We reoptimize
these portfolios every 3 months and ignore the transaction cost.
The cumulative return of portfolios are shown in Fig. 1. It
is significantly clear that the heuristic 1/N portfolio and the
quintile portfolio outperform all theory-based portfolios.

III. INTERPRETING THE 1/N AND QUINTILE PORTFOLIOS AS

ROBUST PORTFOLIO DESIGNS

Considering the fact that we only have the estimation of the
asset characteristics, a robust optimization is useful to make the
problem robust to parameter errors of assets’ characteristics. We
are particularly interested in the worst-case robust optimization,
which optimizes the worst-case objective when the the true
parameter is assumed to lie in an known uncertainty set centered
around the estimated value [11]. Without loss of generalization,
we interpret the quintile portfolio based on the estimated ex-
pected return. It is of no difficulty to replace the expected return
with any other characteristic, while the conclusion is still valid.

A. Mean Vector Uncertainty Set

There exists many common uncertainty sets for the mean
vector. For example, the box constraint considers the true μ is
element-wise lower and upper bounded, i.e., μl ≤ μ ≤ μu [8],
[11]. The ellipsoidal constraint assumes the true μ is located
in an ellipsoid around a reference μ̄ as {μ|(μ− μ̄)TS−1(μ−
μ̄) ≤ 1}, whereS is usually collinear withΣ [11]. The portfolio
optimization problem under the above two uncertainty sets has
been well developed. But neither of them can help our purpose.
In this paper, we consider that μ lies on an �1-norm ball around

the estimated μ̂, i.e., the uncertainty set is

S = {μ̂+ e, ‖e‖1 ≤ ε}. (5)

To simplify the following discussion, we assume without loss
of generality that the elements of μ̂ have been sorted in nonin-
creasing order so that μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂N .

B. What Formulations Are the 1/N Portfolio and Long-Only
Quintile Portfolio Solving?

In this section, we show how to derive the naive 1/N portfolio
as a robust portfolio. First of all, we introduce a technical
assumption that says ε cannot be exactly equal to some discrete
points, the number of which is no more than N . In practice,
due to the estimation errors in μ̂, this condition is satisfied with
probability 1.

Assumption 1: ε /∈ F1 = {∑k
i=1(μ̂i − μ̂k)

∣

∣

∣k = 1, . . . , N}.

The robust best characteristic portfolio problem with no short-
ing constraint is formulated as:

maximize
w

min
μ∈S

μTw

subject to w ≥ 0, 1Tw = 1.
(6)

Lemma 1: The optimal objective of the problem
minμ∈S μTw is p� = μ̂Tw − ε‖w‖∞.

Proof: Considering S in (5), the above problem becomes

minimize
‖e‖1≤ε

μ̂Tw + eTw . (7)

It is straightforward that the worst-case error e has to put all
the weight on the largest element of w. Therefore, the optimal
objective is μ̂Tw − εmaxi |wi|, i.e., p� = μ̂Tw − ε‖w‖∞. �
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With usage of Lemma 1, problem (6) is equivalent to

maximize
w

μ̂Tw − ε‖w‖∞
subject to w ≥ 0, 1Tw = 1.

(8)

Furthermore, it can be reformulated in epigraph form [35] as

maximize
w,t

μ̂Tw − εt

subject to 0 ≤ w ≤ t1, 1Tw = 1
(9)

Lemma 2: The optimal solution to problem (9), under
Assumption 1, is

w� =

[

1

m
, . . . ,

1

m
, 0, . . . , 0

]T

, (10)

whose first m elements are 1/m and the rest are 0, where m is
the maximum k ∈ {1, . . . , N} satisfying

∑k
i=1(μ̂i − μ̂k) < ε.

Proof: The Lagrangian of problem (9) is given by:

L(w,α,β, η) = μ̂Tw − εt+αTw + βT (t1−w)

+ η
(

1− 1Tw
)

Then, we write the KKT conditions as:

1Tw = 1, 0 ≤ w ≤ t1,

α ≥ 0, β ≥ 0,

αTw = 0, βT (t1−w) = 0,

∂L

∂w
= μ̂+α− β − η1 = 0,

∂L

∂t
= 1Tβ − ε = 0.

According to complementary slackness, if wi > 0, then αi = 0
and βi = μ̂i − η ≥ 0, and further wi = t when μ̂i > η. In con-
trast, ifwi = 0, then we have βi = 0 (since it must be that t > 0)
and αi = η − μ̂i ≥ 0. Equivalently, we can write the following
expressions for αi, βi, and wi w.r.t. η as:

αi = (η − μ̂i)
+ ,

βi = (μ̂i − η)+ ,

wi =

⎧

⎪
⎨

⎪
⎩

t μ̂i > η

0 ≤ wi ≤ t μ̂i = η

0 μ̂i < η

, (11)

where (x)+ = max(0, x). Then, we can easily apply 1Tβ =
∑N

i=1(μ̂i − η)+ = ε to find the η�, which is also known as
the classical water-filling solution [36]. According to the con-
dition ε /∈ F1, we have μ̂i �= η�, which means w�

i = {0, t}
is always satisfied. Recall that μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂N , then the
w� = [t, . . . , t, 0, . . . , 0]T is the optimal solution to problem
(9). Denote by m the number of non-zero elements in w�, it
is easy to find that m is equal to the maximum k ∈ {1, . . . , N}
satisfying

∑k
i=1(μ̂i − μ̂k) < ε. Finally considering 1Tw = 1,

we then have t = 1/m.
According to Lemma 2, the optimal portfolio to problem

(6) equally longs the assets with most attractive (estimated)
characteristics. The number of active assets, i.e., those with non-
zero weights, is determined by the estimation error level ε. The

larger ε, the more active assets. The following two corollaries
explain the condition of ε, under which the resulting portfolio
will be exactly the 1/N portfolio or the quintile portfolio. Fig. 2
illustrates the relations between different levels of estimation
uncertainty and the returning portfolio. �

Corollary 3: If ε >
∑N

i=1(μ̂i − μ̂N ), then the optimal solu-
tion of problem (6) is exactly the 1/N portfolio.

Corollary 4: If
∑q

i=1(μ̂i − μ̂q) < ε <
∑q+1

i=1 (μ̂i − μ̂q+1),
where q is the number corresponding to 20% of the assets,
then the optimal solution of problem (6) is exactly the long-only
quintile portfolio.

C. What Formulation is the Long-Short Quintile Portfolio
Solving?

First of all, we introduce a technical assumption that says ε
cannot be exactly equal to some discrete points, the number of
which is no more than

⌊
N
2

⌋

. In practice, due to the estimation
errors in μ̂, this condition is satisfied with probability 1.

Assumption 2: ε /∈ F2 = {∑k
i=1(μ̂i − μ̂k) +

∑N
i=N−k+1

(μ̂N−k+1 − μ̂i)
∣

∣

∣k = 1, . . . ,
⌊
N
2

⌋}.

The robust best characteristic portfolio problem with dollar-
neutral constraint is formulated as:

maximize
w

min
μ∈S

μTw

subject to 1Tw = 0, ‖w‖1 = 1.
(12)

According to Lemma 1, it is equivalent to:

maximize
w

μ̂Tw − ε‖w‖∞
subject to 1Tw = 0, ‖w‖1 = 1,

(13)

which can be rewritten in epigraph form as

maximize
w,t

μ̂Tw − εt

subject to 1Tw = 0, ‖w‖1 = 1,
−t1 ≤ w ≤ t1.

(14)

Obviously, problem (14) is non-convex because of the �1-norm
equality constraint. To tackle such problem, we need first explore
some properties of its optimal solution.

Lemma 5: There exist an optimal solution w� to problem
(14) that satisfies the condition:

w�
i = −w�

N+1−i ≥ 0, i = 1, . . . ,

⌊

N + 1

2

⌋

. (15)

Proof: Please refer to Appendix A. �
Lemma 5 tells us that the optimal weight of the asset with

i-th highest μ̂ should be exactly opposite to optimal weight
of the asset with i-th lowest μ̂. Besides, for such a pair, the
optimal weight of the asset with higher μ̂ is nonnegative. Note
that Lemma 5 becomes a necessary condition for optimality
when μ̂1 > μ̂2 > · · · > μ̂N , i.e., the inequalities are strict.

Using Lemma 5, we can simplify problem (14) by optimizing
only the left half elements of w, denoted by w̌, as

maximize
w̌

dT w̌ − ε‖w̌‖∞
subject to w̌ ≥ 0, 1T w̌ = 1

2 ,
(16)

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 23,2020 at 01:01:00 UTC from IEEE Xplore.  Restrictions apply. 



4034 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 2. Different levels of estimation uncertainty and the resulting portfolio.

where d is a vector of length �(N − 1)/2	 with di = μ̂i −
μ̂N+1−i. It can be easily solved by Lemma 2. Then the optimal
solution to problem (12) can be easily obtained as the following
lemma.

Lemma 6: An optimal solution to problem (12), under
Assumption 2, is

w� =

[

1

2m
, . . . ,

1

2m
, 0, . . . , 0,− 1

2m
, . . . ,− 1

2m

]T

, (17)

whose top and bottom m elements are non-zero, where m is
the maximum k ∈ {1, . . . , ⌊N2

⌋} satisfying
∑k

i=1(μ̂i − μ̂k) +
∑N

j=N−k+1(μ̂N−k+1 − μ̂j) < ε.
Proof: The proof directly follows the combination of Lemma

2 and Lemma 5. �
According to Lemma 6, the optimal portfolio to problem (12)

longs the assets with most attractive (estimated) characteristics
and shorts the exactly same number of the assets with least
attractive (estimated) characteristics. The weight allocated to
each active asset is exactly the same. The number of active assets
is also determined by the estimation error level ε. The larger ε,
the more active assets.

Corollary 7: If f(q) < ε < f(q + 1), where f(m) =
∑m

i=1(μ̂i − μ̂m) +
∑N

j=N−m+1(μ̂N−m+1 − μ̂j) and q is the
number corresponding to 20% of the assets, then the top 20%
assets will be long and bottom 20% assets will be short equally,
which is exactly the long-short quintile portfolio.

IV. FROM EQUAL WEIGHTS TO INVERSE-VOLATILITY

WEIGHTS

We have shown, in the above section, that the 1/N portfolio
and long-only quintile portfolio can be derived from the robust
portfolio designs. However, the uncertainty set S might not be
convincing enough because it assumes the estimation error can
equally affect all elements in μ̂. Compared with that, it is more
reasonable to believe that the μ̂i with larger variance is likely
to suffer larger estimation error. In this section, we propose an
improved version of the characteristic vector uncertainty set,
which can be used to derive another series of portfolios called
inverse-volatility portfolio.

A. Long-Only Quintile-IV Portfolio

Based on the above analysis, we propose to adjust S using the
volatility information as

A1 = {μ̂+ e, ‖e
 σ̂‖1 ≤ ε}, (18)

where 
 is element-wise division and σ̂ = [σ̂1, . . . , σ̂N ]T > 0
is the estimated standard deviation (i.e., volatility) of the returns
ofN assets. An example on comparing the shapes of uncertainty
sets is given in Fig. 3, where the maximum error on μ̂i, i.e., the
maximum absolute value of ei, is proportional to σ̂i.Similar to
Assumption 1, we introduce a technical assumption that says ε in
A1 cannot be exactly equal to some discrete points, the number
of which is no more than N . In practice, due to the estimation
errors in μ̂, this condition is satisfied with probability 1.
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Fig. 3. Comparison of shapes of uncertainty sets S and A1 with σ̂1 < σ̂2 <
σ̂3.

Assumption 3: ε /∈ {∑k
i=1

μ̂i−μ̂k

σ̂i

∣

∣

∣k = 1, . . . , N}.

The robust best characteristic portfolio problem with no short-
ing constraint is formulated as:

maximize
w

min
μ∈A1

μTw

subject to w ≥ 0, 1Tw = 1.
(19)

Lemma 8: The optimal objective of the problem
minμ∈A1

μTw is p� = μ̂Tw − ε‖σ̂ �w‖∞, where � is
the Hadamard product.

Proof: The problem minμ∈A μTw can be rewritten as

minimize
‖e
σ̂‖1≤ε

μ̂Tw + (e
 σ̂)T (σ̂ �w)

Using Lemma 1, it is obvious that p� = μ̂Tw − ε‖σ̂ �w‖∞.
�

With usage of Lemma 8, problem (19) is equivalent to

maximize
w

μ̂Tw − ε‖σ̂ �w‖∞
subject to w ≥ 0, 1Tw = 1.

(20)

Furthermore, it can be reformulated in epigraph form as

maximize
w,t

μ̂Tw − εt

subject to w ≥ 0, 1Tw = 1, σ̂ �w ≤ t1
(21)

Lemma 9: The optimal solution to problem (19), under
Assumption 3, is

w� =

(

m
∑

i=1

1

σ̂i

)−1 [
1

σ̂1
, . . . ,

1

σ̂m
, 0, . . . , 0

]T

, (22)

whose only first m elements are nonzero, where m is the
maximum k ∈ {1, . . . , N} satisfying

∑k
i=1(μ̂i − μ̂k)/σ̂i < ε.

Proof: Please refer to Appendix B. �
It provides the variations of 1/N portfolio and long-only

quintile portfolio. The optimal portfolio to problem (19) still
longs the assets with the most attractive (estimated) character-
istics, while the wealth is no longer equally allocated to assets,
but in inverse proportion to their standard deviation. We call
this portfolio quintile inverse-volatility (quintile-IV) portfolio.
Similar to the long-only quintile portfolio, the larger ε, the more
active assets.

Corollary 10: If ε >
∑N

i=1(μ̂i − μ̂N )/σ̂i, then the optimal
solution of problem (19) is

w� =

(

N
∑

i=1

1

σ̂i

)−1 [
1

σ̂1
, . . . ,

1

σ̂N

]T

. (23)

Corollary 11: If
∑q

i=1(μ̂i − μ̂q)/σ̂i < ε <
∑q+1

i=1 (μ̂i −
μ̂q+1)/σ̂i, where q is the number corresponding to 20% of the
assets, then the optimal solution of problem (19) is

w� =

(
q
∑

i=1

1

σ̂i

)−1 [
1

σ̂1
, . . . ,

1

σ̂q
, 0, . . . , 0

]T

. (24)

B. Long-Short Quintile-IV Portfolio

In this section, we introduce another uncertainty set of
μ as μ ∈ A2 = {μ̂+ e,1T [e
 σ̂]+ ≤ ε+,−1T [e
 σ̂]− ≤
ε−}, where [x]+ = max(x,0) and [x]− = min(x,0). It is
slightly different from previous one by splitting it into positive
and negative error. Then the robust best characteristic portfolio
problem with dollar-neutral constraint can be formulated as:

minimize
w

min
μ∈A2

μTw

subject to 1Tw = 0, ‖w‖1 = 1. (25)

It is obvious that for the inner problem of problem (25),
e�(w)�w ≤ 0 is guaranteed. Then we can separate w into
w+ = [w]+ and w− = [w]−, and uncertainty set A2 into
A−

2 = {μ̂+ e|e ≤ 0,−1T [e
 σ̂]− ≤ ε−} and A+
2 = {μ̂+

e|e ≥ 0,1T [e
 σ̂]+ ≤ ε+}. Then the problem (25) can be
rewritten as

minimize
w+,w−

min
μ∈A−

2

μTw+ + min
μ∈A+

2

μTw−

subject to w+ ≥ 0, 1Tw+ =
1

2
,

w− ≤ 0, 1Tw− = −1

2
,

w�
+ �w�

− = 0. (26)

For temporary, we can decouple the variables and obtain the two
separated problems by ignoring the constraints w�

+ �w�
− = 0

maximize
w+

min
μ∈A−

2

μTw+

subject to w+ ≥ 0, 1Tw+ =
1

2
, (27)

maximize
w−

min
μ∈A+

2

μTw−

subject to w− ≤ 0, 1Tw− = −1

2
(28)

Remark 12: Denote by w�
+ and w�

− the optimal solutions to
problem (27) and (28). If w�

+ �w�
− = 0, then w� = w�

+ +w�
−

is the optimal solution to the problem (25).

Assumption 4: ε− /∈ {∑k
i=1

(μ̂i−μ̂k)
σ̂i

∣

∣

∣k = 1, . . . , N} and

ε+ /∈ {∑k
j=1

(μ̂N−k+1−μ̂N−j+1)
σ̂N−j+1

∣

∣

∣k = 1, . . . , N}.
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Using Lemma 9, it is easy to find that

w�
+ =

(

m1
∑

i=1

1

σ̂i

)−1 [
1

σ̂1
, . . . ,

1

σ̂m1

, 0, . . . , 0

]T

w�
− =

⎛

⎝

N
∑

j=N−m2+1

1

σ̂i

⎞

⎠

−1
[

0, . . . , 0,
−1

σN−m2+1
, . . . ,

−1

σN

]T

where the first m1 and the last m2 elements in w�
+ and w�

− are
nonzero, with m1 be the maximum k ∈ {1, . . . , N} satisfying
∑k

i=1
(μ̂i−μ̂k)

σ̂i
< ε− and m2 be the maximum k ∈ {1, . . . , N}

satisfying
∑k

j=1
(μ̂N−k+1−μ̂N−j+1)

σ̂N−j+1
< ε+. It is possible that if ε+

and ε− are under proper control, then w�
+ �w�

− = 0 can be
satisfied.

Corollary 13: If
∑q

i=1(μ̂i − μ̂q)/σ̂i < ε− <
∑q+1

i=1 (μ̂i −
μ̂q+1)/σ̂i and

∑q
j=1

(μ̂N−q+1−μ̂N−j+1)
σ̂N−j+1

< ε+ <
∑q+1

j=1

(μ̂N−q−μ̂N−j+1)
σ̂N−j+1

, where q is the number corresponding to
20% of the assets, then the optimal solution of problem (25) is

w� =

[

t1
σ̂1

, . . . ,
t1
σ̂q

, 0, . . . , 0,
−t2

σN−q+1
, . . . ,

−t2
σN

]T

where t1 = 1/
∑q

i=1 σ̂
−1
i and t2 = 1/

∑N
i=N−q+1 σ̂

−1
i .

V. VARIATIONS OF CLASSICAL QUINTILE PORTFOLIO

A. Market Exposure Constraint

Another popular constraint in the portfolio optimization prob-
lem is market exposure constraint. Instead of using constraint
1Tw = 1, some investors would choose βTw = β0, where
β ∈ RN is the assets exposure to the market and β0 is the
target portfolio exposure to the market [37]. Here we assume that
β > 0 and β0 > 0, which is quite common in real markets. Then
the corresponding robust best characteristic portfolio problem
with no shorting constraint is formulated as

maximize
w

min
μ∈S

μTw

subject to w ≥ 0, βTw = β0.
(29)

According to Lemma 1, it is equivalent to

maximize
w

μ̂Tw − ε‖w‖∞
subject to w ≥ 0, βTw = β0.

(30)

Denoting w̃ = (β/β0)�w, problem (30) can be rewritten as

maximize
w̃

μ̃T w̃ − ε‖ (β/β0)
−1 � w̃‖∞

subject to w̃ ≥ 0, 1T w̃ = 1,
(31)

where μ̃ = μ̂
 (β/β0) is the element-wise scaled estimated
characteristic vector. The optimal solution to problem (31) can
be easily obtained using Lemma 9. The assets with highest value
of μ̃, i.e., characteristic-beta ratio, will be active. Let w̃i > 0
belong to an active asset, we have w̃�

i ∝ βi/β0. Considering
wi = w̃i/(βi/β0), we can easily get that the non-zero elements
in w� are equally weighted, which admits a similar form as the
optimal solution to problem (6). But it ranks the assets according

Fig. 4. An example of optimal solution to problem (33).

to the characteristic-beta ratio instead of the simple character-
istic vector. Assuming assets have been sorted according to
μ̃, the number of active assets is given by the relative size of
ε and

∑k
i=1(μ̃i − μ̃k)/(β0/βi) =

∑k
i=1(μ̂i − βi

βk
μ̃k), which is

not related to β0. Therefore, β0 only affects the size of the equal
weight.

B. Market-Neutral Constraint

Instead of the dollar-neutral constraint, some investors may
prefer the market-neutral constraint as it can eliminate market
risk exposure [38]. The corresponding robust best characteristic
portfolio problem with market-neutral constraint is

maximize
w

min
μ∈S

μTw

subject to ‖w‖1 = 1, βTw = 0.
(32)

According to Lemma 1, it is equivalent to

maximize
w

μ̂Tw − ε‖w‖∞
subject to ‖w‖1 = 1, βTw = 0.

(33)

We notice that the appealing structure of the long-short quintile
portfolio is broken down in this case. A simple numerical
example is given in Fig. 4, where we let the elements in μ̂
change from 0.5 to 0.15 with equal spacing of 0.05, ε = 0.4,
and β = [1, 2, 1, . . . ]T . First we can observe that the numbers
of assets allocated with positive and negative weights are not
the same. Also, the active assets do not follow from a simple
characteristic ranking or characteristic-beta ranking as in the
long-only case. Besides, the weights are not of the same size
any more. Nevertheless, the fact that the solution does not fit
the quintile interpretation does not mean that one cannot solve
problem (33).

C. Zero Active Sector Exposure Constraint

Consider the zero active sector exposure constraint in the
optimization problem as 1T

nk
wk = 0, k = 1, . . . ,K, where K

is the number of sectors, nk is the number of assets in the k-th
sector, andwk ∈ Rnk is the weights of assets in k-th sector [39].
The corresponding robust best characteristic portfolio problem
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with dollar-neutral constraint becomes:

maximize
w

min
μ∈S

μTw

subject to ‖w‖1 = 1,
1T
nk
wk = 0, k = 1, . . . ,K.

(34)

According to Lemma 1, it is equivalent to:

maximize
w

μ̂Tw − ε‖w‖∞
subject to ‖w‖1 = 1,

1T
nk
wk = 0, k = 1, . . . ,K.

(35)

The following lemma shows that, in the k-th sector, for a pair of
assets consisting of the one with i-th highest μ̂ and the one with
i-th lowest μ̂, the optimal weights are exactly opposite and the
optimal weight on the asset with higher μ̂ is nonnegative.

Lemma 14: There exist an optimal solution w� to problem
(35) that satisfies the condition:

w�
k,i = −w�

k,nk+1−i ≥ 0, i = 1, . . . ,

⌊

nk + 1

2

⌋

, (36)

where wk,i is the weight of the asset with i-th highest μ̂ in k-th
sector.

Proof: The proof follows the Appendix A within the k-th
sector. Thus it is omitted here. �

Using Lemma 14, we are aware that, in the optimal solution to
problem (35), the positive weights and negative weights follow
the one-to-one negative correspondence inside each sector. We
can simply pair these assets and denote by w̌ ≥ 0 the positive
weights allocated to the assets with higher estimated return in
these sector-aware pairs. Then we can transform the problem
(35) into

maximize
w̌

dT
s w̌ − ε‖w̌‖∞

subject to w̌ ≥ 0, 1T w̌ = 1
2 ,

(37)

where ds is a vector with each element representing difference
of μ̂ from a pair of assets. It can also be easily solved by
Lemma 2. Note that in this case, the optimal portfolio is still
equally weighted, while the ranking is based on a section-aware
fashion. The optimal portfolio follows a quintile structure on a
sector-basis.

D. Robust Portfolio With General Risk Control

The quintile portfolio has been shown as an optimal solution to
a robust portfolio optimization problem against the characteristic
uncertainty. However, the risk management is absent from the
optimization, while it is actually a crucial element of portfolio
design [40]. To enhance the risk control of quintile portfolio, we
can introduce the risk management term into our robust portfolio
optimization problem:

maximize
w

min
μ∈S

μTw − g (w)

subject to w ∈ W,
(38)

where g(w) measures the risk of the portfolio, e.g., the expected
variance or risk concentration [41]. In such a case, however, the
appealing structure of the quintile or 1/N portfolios most likely
vanish. We leave the study of the above problem to the future
work.

Fig. 5. Annualized return of long-only quintile portfolios based on estimated
returns.

VI. NUMERICAL EXPERIMENTS

In this paper, we have reinterpreted the heuristic 1/N and
quintile portfolios as solutions to a mathematically sound robust
portfolio optimization under different levels of robustness level
in the characteristics. The benefits of these heuristic portfolios
have been well verified in various markets, e.g., [20], [32]. Ac-
cording to our proposed robust portfolio optimization problem,
the heuristic portfolio can be derived from optimizing the worst-
case performance. Therefore, we will only focus on providing
some evidence on the reasonability of our proposed problem
formulation. The experiments are performed with backtests on
the quintile portfolio and quintile-IV portfolio.

A. Data and Backtest Description

We first obtain 100 datasets, each of them containing the
historical daily price1 data of 100 stocks over 1000 continuous
trading days. The datasets are obtained by randomly choosing
from a dataset of 500 stocks, all of them listed in the S&P 500
Index components,2 from 2004-01-01 to 2018-12-31. Then for
each dataset we perform the backtest on a rolling-window basis
(see R package portfolioBacktest [42]) with a lookback window
length of 252 (one year trading days for training) for obtaining
the optimal portfolio and a window length of 22 (one month
trading days for testing) for verifying the portfolio performance.
To simplify the comparison, we assume a daily rebalancing
scheme and ignore the transaction cost.

B. Ranking on Estimated Returns

First, we rank the stocks based on the estimated returns (cor-
responding to the Momentum factor), which are captured by the
sample mean of the return of assets during the lookback window.
In Fig. 5, we consider the long-only constraints and show the dis-
tribution of annualized returns over 100 dataset for each quintile

1Historical daily prices of stocks are available at https://finance.yahoo.com/.
2Symbols of S&P 500 Index components are available at https://en.wikipedia.

org/wiki/List_of_S%26P_500_companies.
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TABLE II
PERFORMANCE OF QUINTILE PORTFOLIOS BASED ON ESTIMATED RETURNS (95% CONFIDENCE INTERVAL)

Fig. 6. Annualized return of long-short quintile portfolios based on estimated
returns.

portfolio. Fig. 6 shows the results following the same fashion
but on the long-short quintile portfolio. Note that the long-short
quintile portfolio shows unsatisfactory profitability due to the
financial crisis of 2007-08 [22]. We are particularly interested
in the worst-case annualized return as it corresponds with the
objective of our proposed problem formulation. If outliers are
considered as worst cases, both figures show that the worst-case
return can always be improved by activating more assets, which
supports the 1/N portfolio. If outliers are ignored, however, the
best performance of worst-case return appears at around 70%
active assets in the long-only case, while still 100% active assets
in the long-short case. The results of the quintile-IV portfolio
in terms of the annualized return is very similar to results of
the quintile portfolio. We report the detailed performance of the
quintile and quintile-IV portfolio based on estimated returns in
Table II. The backtest results imply that the sample estimation
of expected returns might be extremely noisy.

C. Ranking on Estimated Volatilities

Then, we rank the stocks based on the estimated volatilities
(stocks with low volatilities are ranking at top positions, corre-
sponding to the Low Volatility factor), which are captured by
the sample deviations of the return of assets during the lookback
window. We only show the results of long-only quintile portfolio

Fig. 7. Annualized volatility of long-only quintile portfolios based on esti-
mated volatilities.

Fig. 8. Annualized volatility of long-only quintile-IV portfolios based on
estimated volatilities.

as shorting high volatility stocks does not intuitively reduce the
volatility of portfolio return. Fig. 7 and Fig. 8 shows the distribu-
tion of annualized volatilities over 100 dataset for each quintile
and quintile-IV portfolio. Interestingly, no matter if we ignore
the outliers, the the best performance of worst-case volatility
appears at around 5% active assets in both figures. Besides, the
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TABLE III
PERFORMANCE OF QUINTILE PORTFOLIOS BASED ON ESTIMATED VOLATILITIES (95% CONFIDENCE INTERVAL)

quintile-IV portfolio seems to outperform the quintile portfolio
in terms of the worst-case volatility. The detailed performance of
quintile portfolio based on the estimated volatilities is reported
in Table III. It implies that the sample estimation of standard
deviation might be tolerable.

VII. CONCLUSION

This paper has considered quintile portfolios, both long-only
and long-short ones, commonly used by practitioners in financial
markets, as well as the 1/N portfolio. We have formulated a
mathematically meaningful robust best characteristic portfolio
design problem, whose solution is a family of quintile portfolios
with different active number of assets under different uncertainty
level of the stocks’ characteristics. Based on that, we have also
shown how to derive the inverse-volatility portfolio by proposing
a variance-adjusted uncertainty set of the characteristic vector.
It bridges the gap between the practitioner heuristic quintile
portfolio and Markowitz’s portfolio.

APPENDIX

A. Proof of Lemma 5

First observe that if i ≤ j, then it must be that w�
i ≥ w�

j .
Because if not, we can simply swap them without increasing
the objective value. If there exists w�

i > 0, then w�
j = t satisfies

for ∀j < i. Because if there exist w�
j < t, we can decrease w�

i

and add the same increment to w�
j until w�

i = 0 or w�
j = t.

The constraints are not violated, while the objective function is
not decreasing. Similarly, if there exists w�

i < 0, then w�
j = −t

satisfies for ∀j > i. Therefore, the optimal solution must ad-
mit the certain form as [t, . . . , t, w�

i , 0, . . . , 0, w
�
j ,−t, . . . ,−t]T ,

where 0 ≤ w�
i ≤ t and −t ≤ w�

j ≤ 0. Considering the con-
straint 1Tw = 0, we have w�

i = −w�
N+1−i satisfied. Besides,

if i ≤ ⌊N+1
2

⌋

, meaning that i ≤ N + 1− i, then it must be
w�

i ≥ w�
N+1−i. Using w�

i = −w�
N+1−i and w�

i ≥ w�
N+1−i, we

can easily get w�
i ≥ 0.

B. Proof of Lemma 9

The Lagrangian of problem (21) is given by:

L(w,α,β, η) = μ̂Tw − εt+αTw + βT (t1− σ̂ �w)

+ η
(

1− 1Tw
)

(39)

Then, we write the KKT conditions as:

1Tw = 1, 0 ≤ σ̂ �w ≤ t1,

α ≥ 0, β ≥ 0,

αTw = 0, βT (t1− σ̂ �w) = 0,

∂L

∂w
= μ̂+α− β � σ̂ − η1 = 0,

∂L

∂t
= 1Tβ − ε = 0. (40)

According to complementary slackness, if wi > 0, then αi = 0
and βi = (μ̂i − η)/σ̂i ≥ 0, and furtherwi = t/σ̂i when μ̂i > η.
In contrast, if wi = 0, then βi = 0 (since it must be that t > 0)
and αi = η − μ̂i ≥ 0. Equivalently, we can write the following
expressions for αi, βi, and wi w.r.t. η as:

βi =
(μ̂i − η)+

σ̂i
, wi =

⎧

⎪
⎨

⎪
⎩

t/σ̂i μ̂i > η

0 ≤ wi ≤ t/σ̂i μ̂i = η

0 μ̂i < η

. (41)

Then, we can easily apply 1Tβ =
∑N

i=1(μ̂i − η)+/σ̂i =
ε to find the η�. According to the Assumption 3, we
have μ̂i �= η�, which means w�

i = {0, t/σ̂i} is always sat-
isfied. Recall that μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂N , then the w� =
[t/σ̂1, . . . , t/σ̂i, 0, . . . , 0]

T is the optimal solution to problem
(9). Denote by m the number of non-zero elements in w�, it is
easy to find thatm is equal to the maximum k ∈ {1, . . . , N} sat-
isfying

∑k
i=1(μ̂i − μ̂k)/σ̂i < ε. Finally considering 1Tw = 1,

we then have t = 1/
∑m

i=1 σ̂
−1
i .
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